Détail de l'auteur
Auteur Daniel Lignon |
Documents disponibles écrits par cet auteur (18)
Ajouter le résultat dans votre panier Affiner la recherche
200, un nombre pas comme les autres / Daniel Lignon / Archimède (2021) in Tangente (Paris), 200 (07/2021)
[article]
Titre : 200, un nombre pas comme les autres Type de document : texte imprimé Auteurs : Daniel Lignon, Auteur Editeur : Archimède, 2021 Article : p.2-4 Langues : Français (fre)
in Tangente (Paris) > 200 (07/2021)Descripteurs : nombre entier Résumé : Le point sur les propriétés arithmétiques du nombre 200 : il n'est pas hautement composé, est abondant, n'est pas parfait, est puissant sans être une puissance exacte comme les nombres d'Achille, est pratique, constitue un nombre de Padovan (nombre plastique) et un nombre composé stable. Encadrés : géométrie d'un nombre plastique ; les notions de nombre premier instable et de nombre composé stable. Nature du document : documentaire Genre : / Article de périodique //Article de périodique [article] 200, un nombre pas comme les autres [texte imprimé] / Daniel Lignon, Auteur . - Archimède, 2021 . - p.2-4.
Langues : Français (fre)
in Tangente (Paris) > 200 (07/2021)
Descripteurs : nombre entier Résumé : Le point sur les propriétés arithmétiques du nombre 200 : il n'est pas hautement composé, est abondant, n'est pas parfait, est puissant sans être une puissance exacte comme les nombres d'Achille, est pratique, constitue un nombre de Padovan (nombre plastique) et un nombre composé stable. Encadrés : géométrie d'un nombre plastique ; les notions de nombre premier instable et de nombre composé stable. Nature du document : documentaire Genre : / Article de périodique //Article de périodique L'apport génial de Galois / Daniel Lignon / Archimède (2021) in Tangente. Hors-série (Paris), 080 (12/2021)
[article]
Titre : L'apport génial de Galois Type de document : texte imprimé Auteurs : Daniel Lignon, Auteur Editeur : Archimède, 2021 Article : p.12-14 Langues : Français (fre)
in Tangente. Hors-série (Paris) > 080 (12/2021)Descripteurs : équation algébrique Mots-clés : Galois, Evariste (1811-1832) Résumé : Le point sur les apports mathématiques d'Evariste Galois à la fondation de la théorie des groupes : l'histoire de la résolution des équations algébriques de degré 2 depuis l'Antiquité ; la résolution des équations algébriques de degré 5 et les contributions des mathématiciens Carl Friedrich Gauss, Paolo Ruffini, Augustin-Louis Cauchy, Niels Abel ; la création du groupe de permutation associé à une équation ou groupe de Galois de l'équation. Encadrés : éléments biographiques sur Niels Abel, ses travaux mathématiques ; les conditions de résolution d'une équation polynomiale par radicaux selon E. Galois ; éléments biographiques sur Evariste Galois, notamment son parcours scientifique ; un exemple de casus irreducibilis relatif à la résolution d'une équation de degré 3 à coefficients : X3 - 3X - 1 = 0. Nature du document : documentaire Genre : / Article de périodique //Article de périodique [article] L'apport génial de Galois [texte imprimé] / Daniel Lignon, Auteur . - Archimède, 2021 . - p.12-14.
Langues : Français (fre)
in Tangente. Hors-série (Paris) > 080 (12/2021)
Descripteurs : équation algébrique Mots-clés : Galois, Evariste (1811-1832) Résumé : Le point sur les apports mathématiques d'Evariste Galois à la fondation de la théorie des groupes : l'histoire de la résolution des équations algébriques de degré 2 depuis l'Antiquité ; la résolution des équations algébriques de degré 5 et les contributions des mathématiciens Carl Friedrich Gauss, Paolo Ruffini, Augustin-Louis Cauchy, Niels Abel ; la création du groupe de permutation associé à une équation ou groupe de Galois de l'équation. Encadrés : éléments biographiques sur Niels Abel, ses travaux mathématiques ; les conditions de résolution d'une équation polynomiale par radicaux selon E. Galois ; éléments biographiques sur Evariste Galois, notamment son parcours scientifique ; un exemple de casus irreducibilis relatif à la résolution d'une équation de degré 3 à coefficients : X3 - 3X - 1 = 0. Nature du document : documentaire Genre : / Article de périodique //Article de périodique Avant Abel et Galois / Daniel Lignon / Archimède (2022) in Tangente. Hors-série (Paris), 082 (06/2022)
[article]
Titre : Avant Abel et Galois Type de document : texte imprimé Auteurs : Daniel Lignon Editeur : Archimède, 2022 Article : p.30-33 Langues : Français (fre)
in Tangente. Hors-série (Paris) > 082 (06/2022)Descripteurs : équation algébrique Résumé : Le point sur les travaux et les questions mathématiques concernant la résolution des équations algébriques antérieurement aux apports d'Evariste Galois et de Niels Henrik Abel : les équations du premier et du second degré au temps des Babyloniens ; les apports d'Euclide et de al-Khwârismi ; les études par les Grecs des équations du 3e degré ; les apports des mathématiciens italiens à la Renaissance. Encadrés : l'évolution historique de l'écriture mathématique d'une équation algébrique, notamment les apports de René Descartes ; la résolution d'une équation de degré 3 ; la méthode de Ferrari de résolution d'une équation générale du quatrième degré. Bibliographie. Nature du document : documentaire Genre : Article de périodique [article] Avant Abel et Galois [texte imprimé] / Daniel Lignon . - Archimède, 2022 . - p.30-33.
Langues : Français (fre)
in Tangente. Hors-série (Paris) > 082 (06/2022)
Descripteurs : équation algébrique Résumé : Le point sur les travaux et les questions mathématiques concernant la résolution des équations algébriques antérieurement aux apports d'Evariste Galois et de Niels Henrik Abel : les équations du premier et du second degré au temps des Babyloniens ; les apports d'Euclide et de al-Khwârismi ; les études par les Grecs des équations du 3e degré ; les apports des mathématiciens italiens à la Renaissance. Encadrés : l'évolution historique de l'écriture mathématique d'une équation algébrique, notamment les apports de René Descartes ; la résolution d'une équation de degré 3 ; la méthode de Ferrari de résolution d'une équation générale du quatrième degré. Bibliographie. Nature du document : documentaire Genre : Article de périodique Bonne année ! Les propriétés de 2023 / Daniel Lignon / Archimède (2023) in Tangente (Paris), 209 (01/2023)
[article]
Titre : Bonne année ! Les propriétés de 2023 Type de document : texte imprimé Auteurs : Daniel Lignon Editeur : Archimède, 2023 Article : p.12-13 Langues : Français (fre)
in Tangente (Paris) > 209 (01/2023)Descripteurs : nombre entier Résumé : Le point sur les propriétés mathématiques du nombre entier 2023 : sa factorisation ; son calcul ludique à partir de certaines règles imaginées par Takeshi Kitano ; l'entier 2023 comme nombre de Flavius Josèphe. Encadré : présentation du carré magique de somme 2023 créé par Dominique Souder. Nature du document : documentaire Genre : Article de périodique [article] Bonne année ! Les propriétés de 2023 [texte imprimé] / Daniel Lignon . - Archimède, 2023 . - p.12-13.
Langues : Français (fre)
in Tangente (Paris) > 209 (01/2023)
Descripteurs : nombre entier Résumé : Le point sur les propriétés mathématiques du nombre entier 2023 : sa factorisation ; son calcul ludique à partir de certaines règles imaginées par Takeshi Kitano ; l'entier 2023 comme nombre de Flavius Josèphe. Encadré : présentation du carré magique de somme 2023 créé par Dominique Souder. Nature du document : documentaire Genre : Article de périodique La classification des groupes finis simples / Daniel Lignon / Archimède (2021) in Tangente. Hors-série (Paris), 080 (12/2021)
[article]
Titre : La classification des groupes finis simples Type de document : texte imprimé Auteurs : Daniel Lignon, Auteur Editeur : Archimède, 2021 Article : p.24-27 Note générale : Bibliographie. Langues : Français (fre)
in Tangente. Hors-série (Paris) > 080 (12/2021)Descripteurs : algèbre / démonstration mathématique Mots-clés : loi et principe scientifique Résumé : Le point sur la mise au point, au cours de l'histoire, de la démonstration mathématique relative à la classification des groupes finis simples appelée théorème de classification - ou théorème géant ou encore énorme théorème - ayant ouvert la voie à de nouvelles démonstrations dites de deuxième et de troisième génération. Encadrés : le théorème de Jordan-Hölder (théorème de dévissage) ; présentation d'un groupe de mathématiciens anglais de l'université de Cambridge et de leur travail collectif de rédaction de l'Atlas des groupes finis paru en 1985 ; les apports mathématiques à la classification complète des groupes finis simples des mathématiciens John Thompson, Daniel Gorenstein et Michael George Aschbacher. Nature du document : documentaire Genre : / Article de périodique //Article de périodique [article] La classification des groupes finis simples [texte imprimé] / Daniel Lignon, Auteur . - Archimède, 2021 . - p.24-27.
Bibliographie.
Langues : Français (fre)
in Tangente. Hors-série (Paris) > 080 (12/2021)
Descripteurs : algèbre / démonstration mathématique Mots-clés : loi et principe scientifique Résumé : Le point sur la mise au point, au cours de l'histoire, de la démonstration mathématique relative à la classification des groupes finis simples appelée théorème de classification - ou théorème géant ou encore énorme théorème - ayant ouvert la voie à de nouvelles démonstrations dites de deuxième et de troisième génération. Encadrés : le théorème de Jordan-Hölder (théorème de dévissage) ; présentation d'un groupe de mathématiciens anglais de l'université de Cambridge et de leur travail collectif de rédaction de l'Atlas des groupes finis paru en 1985 ; les apports mathématiques à la classification complète des groupes finis simples des mathématiciens John Thompson, Daniel Gorenstein et Michael George Aschbacher. Nature du document : documentaire Genre : / Article de périodique //Article de périodique Des distances parfois étonnantes / Daniel Lignon / Archimède (2022) in Tangente. Hors-série (Paris), 081 (03/2022)
PermalinkDonner une définition précise / Daniel Lignon / Archimède (2020) in Tangente. Hors-série (Paris), 074 (04/2020)
PermalinkLes groupes, une question de relations / Daniel Lignon / Archimède (2021) in Tangente. Hors-série (Paris), 080 (12/2021)
PermalinkDes nombres dans les ordinateurs / Daniel Lignon / Archimède (2020) in Tangente (Paris), 196 (10/2020)
PermalinkUne notion géométrique insaisissable / Daniel Lignon / Archimède (2020) in Tangente. Hors-série (Paris), 074 (04/2020)
PermalinkDes nouvelles de la conjecture de Syracuse / Daniel Lignon / Archimède (2020) in Tangente. Hors-série (Paris), 076 (11/2020)
PermalinkPolyèdres : de la formule d'Euler à la caractérisation de Poincaré / Jean-Jacques Dupas / Archimède (2021) in Tangente. Hors-série (Paris), 079 (09/2021)
PermalinkLe problème de Waring : deux cent cinquante ans de recherches ! / Daniel Lignon / Archimède (2023) in Tangente (Paris), 210 (03/2023)
PermalinkDes propriétés mathématiques remarquables / Daniel Lignon / Archimède (2022) in Tangente (Paris), 203 (01/2022)
PermalinkQuand les erreurs se propagent... / Daniel Lignon / Archimède (2020) in Tangente (Paris), 196 (10/2020)
Permalink